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General potentials described by so(2,l) dynamical algebra in 
parabolic coordinate systems 
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lnstituto de Fisica, Universidade Federal d o  Rio de Janeiro, Cidade UniversitPria, llha 
do Fundlo, 21941 Rio de Janeiro, Brazil 

Received 2 April 1991, in final form 18 June 1991 

Abstract. We propose general three-dimensional potentials in rotational and cylindrical 
parabolic coordinates which are generated by direct products of the SO(2, I )  dynamical 
group. Then we ~ o n s t r u ~ t  their Green functions algebraically and find their spectra. 
Particular cases of these potentials which appear in the literature are also briefly discussed. 

1. Introduction 

The search for soluble potentials in quantum mechanics has attracted great interest. 
A general discussion of all three-dimensional separable potentials was established for 
the Schrodinger equation by Eisenhart [13 long ago. Recently, Grosche [2] discussed 
this technique in the context of path integrals. 

Symmetries are frequently invoked to explain well-known solutions and perhaps 
to generate new ones. Winternitz et ai [3] constructed arbitrary potentiais exhibiting 
a dynamical group in two dimensions and Makarov et a/ [4] searched for three- 
dimensional systems with various integrals of motion. This problem was also studied 
at the classical level by Evans [ 5 ] .  The relation between the accidental degeneracy and 
a symmetry Lie algebra was also recently discussed by Moshinsky et a /  [6]. 

In this work we search for general three-dimensional potentials in parabolic coordi- 
nates. Ti is  pariicuiar choice is due to the Fact that they can describe interesting physicai 
systems such as the Coulomb, Hartmann [7] and the Coulomb plus an Aharonov-Bohm 
[SI potentials among others [9]. The so(2 , l )  algebra is known as the spectrum- 
generating algebra of the one-dimensional harmonic oscillator, Coulomb and Morse 
potentials [IO,  111 as well as some other two- and three-dimensional problems [9, 
12-16]. 

The aim of this work .is to give an  insight towards the construction of exactly 
solvable three-dimensional potentials related to a specific dynamical algebra. We briefly 
review in section 2 how so(2,  1) Lie algebra can generate Green functions of the 
Schrodinger equation. In section 3 we construct a general three-dimensional potential 
in parabolic rotational coordinates related to  so(2, 1) Lie algebra and obtain algebrai- 
cally the Green function and calculate the spectrum of the Hamiltonian and the 

parabolic cylindrical coordinates related to the same algebra and leave the conclusions 
to section 5. 
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2. Green function and so(2,l) Lie algebra 

Let us briefly review in this section the basic features of so(2, 1) Lie algebra and its 
use in constructing Green functions. The algebra is defined by the commutation relations 

[ T , ,  T2]=-iT, [T2. T31=-iT3 [TI,  T31=-iT2 (2.1) 
and one may construct a faithful representation of generators [16, 171 

a2 a 
Jx2 Jx  T,(x) = a 2 ~ 2 ~ J - + a , ~ ' ~ ' - + q , ~ ~ J  (2.2a) 

T3(x) =Ax' 

where the parameters p and A are restricted by 

(2 .2b)  

(2.2c) 

The Green functions G E ( r ,  r ' )  satisfies 

( H  - E ) G , ( r ,  r') = S ' ( r -  r ' )  (2.4) 
where H is the Hamiltonian of a three-dimensional system: 

h' 
2 M  H = - - V 2 + V ( r )  (2.5) 

and E is the energy eigenvalue. We use the Schwinger representation [IS] for the 
Green function: 

r - 0  fi 

Writing the resolvent operator A ( x , )  for the effective one-dimensional Hamiltonian Hi 
with eigenvalue Ej, 

(2.7) 

and applying the Milstein and Strakhovenko method [19], with the generators T, 
( I =  1,2,3) (equations (2.2a)-(2.2c)), it is possible to show that [16,20] 

A ( x )  = x-'(Hj - E , )  = g u t  g,  T? +g3  r, ( i  = 1,2,3) 

(g ,+g,T ,  +gIT3)) a(xj  -x:)  

where 
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and L,’(x) are the Laguerre polynomials [21]. Then equation ( 2 . 8 )  can be used for 
each coordinate x, ( i  = 1 , 2 , 3 )  of a three-dimensional system if the effective Hamiltonian 
H,  or, equivalently, the resolvent operator A(x,) (equation ( 2 . 7 ) )  can be written as a 
linear combination on the generators T , ( x , )  of the so(2 ,  1 )  Lie algebra. Once equation 
(2.8) is substituted in equation ( 2 . 6 ) ,  the integration over the parameters can be carried 
out and the poles of the Green function are given by [ 1 6 ]  

(2 .10)  

which give the eigenvalues of the effective Hamiltonian H,,  since the parameters go, 
g, or  m0 are related to E,.  

go+ k ( v +  1 + 2 n )  = O  ( n  = 0, 1 , 2 , .  . .) 

3. Parabolic rotational coordinates 

We want to find a general three-dimensional potential V ( r )  in parabolic rotational 
coordinates 5, 7, ‘p defined by 

( 3 . 1 )  

where Os(<m, Os 1) <m and 0 s  ‘p s 2 ~ ,  which possesses the so(2,I) dynamical Lie 
algebra, in such a way that its Hamiltonian can be expressed as a resolvent operator 
(equation (2 .7) ) .  As the Laplacian in this coordinate system is given by 

x = (7 cos ‘p y = 57 sin ‘p 2 = (772 - ( * ) I 2  

(3.2) 

it cannot be written directly as a linear combination of the generators Ti ( I  = 1 , 2 , 3 ) ,  
hence we propose a potential V ( ( ,  7). to be of the form 

This is not only a matter of choice but an imposition that comes from the fact that we 
want the relation (2 .7)  to hold or, in other words, that the potential V(5,  7) can be 
described by so(2 , l )  dynamical algebra. If one compares the Laplacian (equation 
( 3 . 2 ) )  and the potential (equation ( 3 . 3 ) )  it is clear that the effective potentials associated 
with the coordinates ( and q, apart from the factor ((’+ n2)-’, will be of the quadratic 
type (x;+x;*), Note that the operators of equations ( 2 . 2 a ) - ( 2 . 2 c )  permit, in  principle, 
any power potential (with j #  0), but unfortunately this arbitrariness is restricted by 
the presence of the energy term in equation (2 .7) ,  which in general also has xi 
dependence, which must be described by the generators Ti (x j )  too. In the case of 
Laplacian ( 3 . 2 ) ,  the factor ((*+ q2)-’  implies that j =  2 ,  in equation ( 2 . 2 a ) - ( 2 . 2 c ) .  

In general we see that each type of coordinate system imposes its own features on 
the s o ( 2 , l )  generators. As an example of a different behaviour, in spherical polar 
coordinates the parameterj can also be equal to one, which corresponds to the Coulomb 
potential [16 ,  171. 

Before we solve equation ( 2 . 4 )  with the potential (3.3). let us write the latter in 
spherical polar coordinates r, 8, 9: 

c 
2r  

b ,  + b , + ( b ,  - bJ COS H 
v ( r )  =-+ 2 r 2  + f ( a , + a , ) + i ( a , - a , )  cos 8. (3 .4)  
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This potential appears in the general classification of potentials possessing high 
symmetry [3,4] and also in the work of Kibler and Winternitz [9] but, as far as we 
know, its solution has not been published anywhere. This general potential can be 
reduced, for example, to the Hartmann potential [7] when U ,  = u2 and b ,  = b, .  This is 
also the case of a Coulomb plus an Aharonov-Bohn potential [ 9 ] .  When all the coupling 
constants, except c, vanish it reduces to a Coulomb potential. 

As the potential (3.3) is q independent let us use the operator identity 

A - ' B - ~ = ( B A ) - '  (3.5) 

in the Schwinger representation (equation (2.6)) to put a factor (5q)2  in the exponential 
and rewrite the Green function as 

r-0 f i  [ 1 2 q 2 ( H -  E)-in]) t2q2S3( r -  P ' ) .  (3.6) 

Now, using equations (2.5), (3.2) and (3.3) we can write 

where 

f i 2  a2 
2M a'p 

A ( q ) = - - - ?  (3.8) 

and 

so equation (3.6) is rewritten as 

(3.10) 

where we have used 

(3.11) 

and that fact that the operator A ( q )  commutes with [ . $ ' q 2 / ( g 2 + q 2 ) ] A ( ( ,  7) .  Since the 
operator A('p) comprises only a second-order derivative and the delta function can be 
expanded as 

+m 

s(qp-qp')= e""-"' (3.12) 
m=-m 

we find that 
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Substituting equation (3.13) in equation (3.10) and applying again the operator identity 
(3.5) to introduce a factor (('+7')/((~)'  in the exponential in  order to separate the 
( and 7 parts we find 

+ ( a , - E ) t 2 + ( - '  

and 

Writing equation (2.8) for A,(() we have 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

where 

Note that the operators A , ( t )  and A , ( v )  are completely symmetric, so one can easily 
translate equations (3.17)-(3.19) for A,(?).  Finally, we find the Green function for 
the potential V ( ( ,  7): 

x i  JOm d s (  -i i [ c + k , ( u l n l  + 1 + 2 n , ) +  k2( U>,+ 1+2n2)] ) . (3.20) 

This solution for the potential V ( c ,  V )  (equation (3.3)) means that this potential is 
described by a direct product SO(2, 1 ) 0 S 0 ( 2 ,  1 )  dynamical group. Performing the 



4986 H Eoscki-Filho et al 

integration in the variable s we find the poles of this Green function which constitutes 
the spectrum of the problem: 

c +  k , ( v , , +  1 + 2 n l ) +  k2(u2,+ 1 +2n2) = 0. (3.21) 
The wavefunctions 'U,,,,,(.& q. q )  can be obtained from the residues of the Green 
function at the poles: 

W,"",">(& 7. c )  

exp[i.rr(v,, + v2,,,)l - - -2 eimq 

Substituting the values of k, and k,  in equation (3.21) we find 

112 Mc * M [ (i7;) +i (A;., - &.,)(a, - a , ) ]  ] (A;., - 8 2 , ~ ~  (3.23) 
~ 

where 

and 
A,,L= v,,+1+2ni ( n ,  =o,  1 ,2 , .  . .) (3.24~1) 

B,,=v,,+1+2n2 ( n , = O ,  1,2, .  . .). (3.24b) 

Equation (3.23) for the spectrum is valid when k,  # k,  and A;", # ELn2 (or Amn3 # 

v i m  - U,, = 2n (n=0,*1,+2,  ...) (3.25) 

E,,, since Am">, E,,,> 0). When A,", = E,,,"> this implies that 

so the energy levels are given by 

(3.26) 

Note that equations (3.23) and (3.26) are both complementary to each other since 
they describe different parts of the same spectral problem for A,,, f E,,,,, and A,,,", = 
E,,, respectively. 

In the more restricted case where a ,  = a 2 ,  which implies k ,  = k, ,  the spectrum is 
given by 

(3.27) 

which is the spectrum of the Hartman potential [7] and the Coulomb plus an Aharonov- 
Bohm potential [9]. 

4. Parabolic cylindrical coordinates 

Following the same steps of the preceding section but now working with parabolic 
cylindrical coordinates U, v and z defined by 

y = 2uv z = z  (4.1) 2 2  x = u  - U  
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where 

-w < U < +w 0 S U < + W  -w < z < +w 

we propose the potential 

V(u,  U, z)=[4(u2+u2)]-' 

X [-4n + ( P  - y )u- '+ (P  - y ) u ~ * + 4 6 ~ ~ + 4 & ~ ~ ] +  a ' z*+p ' z - '  (4.2) 

which is described by the SO(2, 1 ) 0 S 0 ( 2 ,  1 ) 0 S 0 ( 2 ,  1) dynamical group. This triple 
product is due  to the fact that all the three coordinates U ,  U and z are associated with 
potentials, each one described by the SO(2, 1) group. As the solution for the potential 
V ( u ,  U, z )  is quite similar to that of the V ( &  7) (equation (3.3)) we will only quote 
the energy spectrum of potential (4.2), which is given by 

4 n = A , ( p , +  1 + 2 n , ) + h z ( p z + 1  +2n2) ( n , , , = O ,  1,2, .  ..) (4.3) 

where 

A ,  = 2fi[Z(E, - S)/ A 2  =2h[2(€, -&)/M]'/' 
p,  = [ 1 + 8 M ( P  - y ) /  +i2]"'/2 p 2 =  [ I  + 8 M ( P  + ~ ) / f i ~ 1 ' ' ~ / 2  (4.4) 

E ,=E-h(2n ' /M)" ' (v+l+2m)  Y =  [l+8M/3'/h21'/2/2. 

The explicit expressions for the Green function, wavefunctions and energies E can 
be  obtained as  in  the case of parabolic rotational coordinates. When we put 6 = E = 0 
in potential (4.2) these results immediately reproduce the particular ones known in 
the literature [15,22]. 

5. Conclusions 

In this work we have shown that we can construct general potentials in parabolic 
coordinate systems which are exactly solvable since they are described by direct 
products of SO(2, 1) Lie groups. Many particular cases of these potentials [9, 15, 221 
has been discussed in the literature. 

It is the hope of the authors that this discussion can be extended to arbitrary 
three-dimensional systems and also to include relativistic quantum problems. 
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